Factor Completely:

(1)
$$7x + 14$$
(2) $6y^2 + 9y + 4xy + 6x$
 $= 3y(2y+3) + 2x(2y+3)$
 $= (2y+3)(3y+2x)$
(3) $x^2 - x - 56$
(4) $2x^2 + 5x + 2$
 $= (x+7)(x-8)$
 1.56
 2.28
 4.14
 7.8
 $= (2x+1)(x+2)$

①
$$24x^3 - 36x^2 - 6x = 6x(4x^2 - 6x - 1)$$

(2)
$$\frac{1}{12}(4\chi - 5) - \frac{12}{10}(4\chi - 5) + \frac{10}{10}(4\chi - 5) =$$

$$(7\chi^2 - 12\chi + 10)(4\chi - 5)$$

3
$$(8x+3)(8x-3) = 64x^2-9$$

$$(4) \quad \chi^{3} + 64 = (\chi + 4)(\chi^{2} - 4\chi + 16)$$

$$\chi^{3} + 4^{3}$$

Factor Completely:
①
$$12 \chi^5 y^6 - 48 \chi^3 y^4$$
 $(A + B)(A - B)$
 $= 12 \chi^3 y^4 (\chi^2 y^2 - 4)$
 $= (2 \chi^3 y^4 (\chi y + 2)(\chi y - 2)$
② $25 \chi^3 - 10 \chi^2 - 15 \chi$
 $= 5 \chi (5 \chi^2 - 2 \chi - 3)$
 $= 5 \chi (5 \chi^2 - 2 \chi - 3)$
 $= (5 \chi + 3 \chi - 5 \chi - 3)$
 $= (5 \chi + 3) - 1(5 \chi + 3)$
 $= (5 \chi + 3)(\chi - 1)$

(3)
$$\chi^{3} - 64\chi$$
 Use $H^{2} - B^{2} = (A + B)(A - B)$
 $= \chi(\chi^{2} - 64)$ $\chi^{2} - 8^{2}$
 $= \chi(\chi + 8)(\chi - 8)$
(4) $\chi^{4} = 128\chi$ Use $\chi^{3} - 3$, why?
 $\chi^{3} = 2\chi = 1$
 $\chi^{3} = 1$

Factor Completely:

(1)
$$\chi^{3} + 100\chi$$
 $= [\chi(\chi^{2} + 100)]$
(2) $\chi^{3} - 100\chi$
 $= \chi(\chi^{2} - 100)$
 $= \chi(\chi^{2$

```
Polynomial Equations:

\chi^2 - 5\chi - 6 = 0, \chi^2 + 10\chi = 0

\chi^3 + 5\chi^2 = 2\chi + 10, 3\chi - 5 = 0

Zero-Product Rule:

Zero-Sactor Property:

If A \cdot B = 0, then A = 0 or B = 0

"Maybe both"

Solve (\chi + 5)(\chi - 8) = 0

RHS=0, LHS is factored completely

by Z.F.P. \chi + 5 = 0 or \chi - 8 = 0

\chi = -5 or \chi = 8
```

Solve
$$(2x-7)(3x+4)=0$$

RHS=0, LHS factored,
By Z.F.P. $2x-7=0$ or $3x+4=0$
 $2x=7$ $3x=-4$
 $2x=\frac{7}{2}$ $x=\frac{-4}{3}$
Solve $(5x+9)(5x-9)=0$ $\{-\frac{4}{3},\frac{7}{2}\}$
By Z.F.R. $5x+9=0$ $5x-9=0$ $\{\pm 9\}$
 $5x=-9$ $x=\frac{-9}{5}$ $5x=\frac{9}{5}$ $\{\pm 9\}$

How to Solve Polynomial equations:

- ORHS=O.
- 2) LHS must be factored completely.
- (3) Use Z.F.R. to Solve.
- (4) final Ans: Soln Set

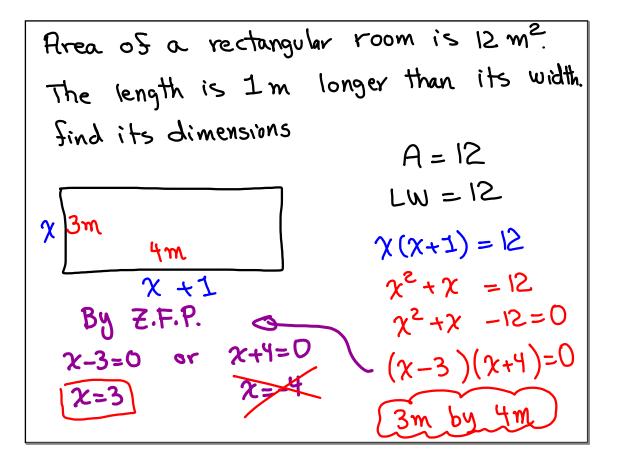
Solve
$$\chi^2 - 2\chi - 24 = 0$$

$$(x-6)(x+4)=0$$

$$\frac{\chi_{+4}=0}{\chi_{-4}}$$

Solve
$$\chi^2 = 20 - \chi$$

$$\chi^{2} - 20 + \chi = 0$$


$$\chi^2 + \chi - 20 = 0$$

$$(x +5)(x -4) = 0$$

$$\chi_{+5=0}$$
 or $\chi_{-4=0}$

$$\chi=-5$$
 $\chi=4$

Solve
$$2x^2 - 7 = 5x$$

 $2x^2 - 7 - 5x = 0$
 $2x^2 - 5x - 7 = 0$
 $(x + 1)(2x - 7) = 0$

Dimension of a rectangle are two consecutive odd integers.

Area is 35 $9+^2$.

Find its dimensions. A = 35 A

The length of a rectangle is 2ft

Shorter than its width.

Its Area is 80 ft²

Sind its dimensions. A = 80 $\chi(\chi-2) = 80$ $\chi^2 - 2\chi = 80$ $\chi^2 - 2\chi - 80 = 0$ The length of a rectangle is 2ft $\chi(\chi-10) = 0$ $\chi(\chi-10) = 0$ $\chi(\chi-10) = 0$

Solve
$$\chi^{2} + (\chi+1)^{2} = (\chi+2)^{2}$$

$$\chi^{2} + \chi^{2} + 2\chi + 1 = \chi^{2} + 4\chi + 4$$

$$2\chi^{2} + 2\chi + 1 = \chi^{2} + 4\chi + 4$$

$$2\chi^{2} + 2\chi + 1 = \chi^{2} - 4\chi - 4 = 0$$

$$\chi^{2} - 2\chi - 3 = 0$$

$$(\chi + 1)(\chi - 3) = 0$$

$$(\chi + 1)(\chi - 3) = 0$$

$$(\chi + 1)(\chi - 3) = 0$$

find
$$x$$
:

$$x = 120$$

$$2x = 120$$

$$2x^{2} - x = 120$$

$$2x^{2} - x - 120 = 0$$

$$(2x + 15)(x - 8) = 0$$

Leo tras \$1.85 in nickels & Dimes.							
# of dimes is I more than twice # of							
nickels. Make a chart, then find how							
many of each coin.	Cat. 1	Number	Value	Amount			
	Dimes	2X+1	10¢	10(2/4)			
1	Nickels	X	5¢	5 X			
10(2x+1) + 5x = 185							
$20x + 10 + 5x = 185$ $\uparrow \text{mickels}$							
25x = 175 $(x = 7)$	70	5 Dim	es				

Small Print -> \$8				
Large Print → \$12	Cat-	Value	Numbe	r Cost
	Small	\$84	_χ	/8x
Total cost -> \$272				12(30-x)
Total # of Prints → 30	Lavge	ر الله		(16(30 7)
How many of each	87	412	(30-x)	=272
	8x	+360	-12 X=	=272
(22 Small prints)	_	-4X =	-88	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		$-\chi$	-22	
8 Large Prints				